Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 162, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429726

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is a novel signaling molecule involved in the growth and development of plants and their response to stress. However, the involvement of H2S in promoting the growth and development of tobacco plants is still unclear. RESULTS: In this study, we explored the effect of pre-soaking or irrigating the roots of tobacco plants with 0.0, 2.0, 4.0, 6.0, and 8.0 mM of sodium hydrosulfide (NaHS) on endogenous H2S production, antioxidant enzymatic and cysteine desulfhydrase activities, seed germination, agronomic traits, photosynthetic pigments contents, and root vigor. The results revealed that exogenous NaHS treatment could significantly promote endogenous H2S production by inducing gene expression of D/L-CD and the activities of D/L-CD enzymes. Additionally, a significant increase in the agronomic traits and the contents of photosynthetic pigments, and no significant difference in carotenoid content among tobacco plants treated with 0.0 to 8.0 mM of NaHS was observed. Additionally, a significant increase in the germination speed, dry weight, and vigor of tobacco seeds, whereas no significant effect on the percentage of seed germination was observed on NaHS treatment. Furthermore, NaHS treatment could significantly increase the activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes, which reduces damage due to oxidative stress by maintaining reactive oxygen species homeostasis. CONCLUSIONS: These results would aid in enhancing our understanding of the involvement of H2S, a novel signaling molecule to promote the growth and development of tobacco plants.


Assuntos
Sulfeto de Hidrogênio , Plântula , Tabaco , Germinação , Agricultura
2.
Sci Rep ; 13(1): 2462, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774417

RESUMO

Since its discovery as a third unique gaseous signal molecule, hydrogen sulfide (H2S) has been extensively employed to resist stress and control pathogens. Nevertheless, whether H2S can prevent tobacco bacterial wilt is unknown yet. We evaluated the impacts of the H2S donor sodium hydrosulfide (NaHS) on the antibacterial activity, morphology, biofilm, and transcriptome of R. solanacearum to understand the effect and mechanism of NaHS on tobacco bacterial wilt. In vitro, NaHS significantly inhibited the growth of Ralstonia solanacearum and obviously altered its cell morphology. Additionally, NaHS significantly inhibited the biofilm formation and swarming motility of R. solanacearum, and reduced the population of R. solanacearum invading tobacco roots. In field experiments, the application of NaHS dramatically decreased the disease incidence and index of tobacco bacterial wilt, with a control efficiency of up to 89.49%. The application of NaHS also influenced the diversity and structure of the soil microbial community. Furthermore, NaHS markedly increased the relative abundances of beneficial microorganisms, which helps prevent tobacco bacterial wilt. These findings highlight NaHS's potential and efficacy as a powerful antibacterial agent for preventing tobacco bacterial wilt caused by R. solanacearum.


Assuntos
Ralstonia solanacearum , /microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Bactérias , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...